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Abstract This chapter considers localized modes for acoustic and

elastic waves. We first discuss trapped modes for acoustic scalar

waves that are perfectly localized solutions near defects in waveg-

uides with a real resonance frequency. Emphasis is given on the

trapping mechanism coming from the evanescent nature of trans-

verse modes in waveguides. We then study the case of quasi-trapped

modes where the wave is strongly localized but can radiate energy.

Complex resonance frequencies are shown to appear through ap-

proximate models and general principles. Eventually, we focus on

elastic wave localization near traction free edges in plates and rods.

The complicated polarization of the wave in elasticity is shown to

increase the ability for trapping with very simple geometries.

1 Introduction

Modes are solutions of the wave equation without sources. They provide

a very powerful tool to understand the response of wave systems when

excited by a source because they represent an intrinsic basis corresponding

to various kind of resonances. When the frequency is close to a resonance

frequency the solution is dominantly given by the corresponding mode. The

more often, modes are defined for closed cavity where the boundaries are

able to quantify the frequencies. Here, we are concerned with trapped modes

and localized solutions that exist for open geometry with confinement in at

least one direction. These waveguide structures support evanescent waves

that facilitate the trapping. Trapped modes were introduced more than

fifty years ago (see for instance Jones (1953)) and since then have induced

an important amount of works (Callan et al., 1991; Evans et al., 1994;

Kaplunov and Sorokin, 1995; Granot, 2002; Bonnet-BenDhia and Mercier,

2007). Recent comprehensive reviews can be found in Linton and McIver

(2007) and Postnova and Craster (2008).
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In these notes, in section 2, a reminder on the usual modes in a closed

cavity is presented, followed by a brief introduction to trapped modes in

open geometries. Section 3 is dedicated to trapped modes for scalar waves.

The basic mechanism of trapping is illustrated with the simple model of

the potential well. Then, the case of waveguides with Dirichlet bound-

ary conditions is dealt with. Acoustic waveguides with Neumann boundary

conditions give a more subtle situation where trapping occurs owing to sym-

metries that allow to localize the solution. Waves localized but radiating

energy are discussed in section 4. A simple model permits to introduce the

complex resonance frequencies corresponding to these quasi-trapped modes

and basic analytical properties in the complex frequency plane are pre-

sented. In section 5, we look at elastic waveguides and their particularity.

It is shown that the vectorial nature of the elastic waves, with longitudinal

and transversal polarizations, o⇤ers the ability to trap the solution near

traction free edge, either in plates or in rods.

2 Di�erent kinds of modes

In the first four sections of these notes we will consider scalar waves. In

the harmonic regime, with the time dependence chosen as e�i⇧t
, they are

governed the Helmholtz equation

↵�+ k2� = 0, (1)

where k = �/c. If c does not depend on � the scalar wave is dispersion-

less: typically it corresponds to acoustic waves (Morse and Ingard, 1968).

If dc/d� �= 0 the wave is dispersive as is the case for instance for water

waves (Cobelli et al., 2011). The Helmholtz equation (1) has to be supple-

mented by boundary conditions. The more often
1
they are of the Dirichlet

or Neumann type: � = 0 at the wall for Dirichlet and ✏n� = 0 for Neu-

mann. Depending on the physical problem, Dirichlet or Neumann boundary

conditions (BC) are applied as summarized below:

• Acoustics (Neumann BC at hard wall)

• Electromagnetism 2D (Neumann or Dirichlet BC for perfect metal)

• Elasticity with SH polarization (Neumann BC for stress free interface)

• Quantum mechanics (Dirichlet BC at hard wall)

• Water waves (Neumann BC at vertical hard wall)

In all these cases we have to deal with a scalar wave represented by a single

scalar function �. In the following, a heuristic introduction to the notion

1Note that mixed boundary conditions exist also: they correspond to a local impedance

or a local admittance.
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of modes for the usual case of a closed cavity and the unusual case of open

geometry is given.

2.1 Modes in cavity (usual)

The usual modes are solutions of the homogeneous Helmholtz equation

(1) in a closed cavity. Figure 1 displays the example of a mode in an acoustic

cavity with hard wall. The wave cannot escape the cavity and the boundary

conditions are able to select a particular set of discrete frequencies kn and

eigenmodes �n that satisfy

↵�n + k2n�n = 0, (2)

with ✏n�n = 0 on the boundary, and where n is the index of the mode. The

Figure 1. A mode in an acoustic cavity.

set of modes �n provides an orthonormal basis
2
with the property:

(�m|�n) = ⌅nm, (3)

where the scalar product is defined as (�|�) =
R
�(x)�(x)dx. The useful-

ness of the modes can now be illustrated when we want to solve the wave

equation in the same cavity with a source s:

↵�+ k2� = s(x). (4)

2It comes from the self-adjointness of the problem, for details on the mathematical

aspects see for instance Stakgold (1998).
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The sought � can be expanded on the mode basis as

�(x) =
X

n

cn�n(x). (5)

Inserting this expansion in the wave equation and using the orthonormality

(3), the coe⌅cients cn are found to be

cn =
(s|�n)

k2 � k2n
. (6)

When k � kn, the solution is dominantly given
3
by the mode �n. We see

here the intrinsic character of the modes: they provide a set of functions

independent of sources and they govern the wave with source when the

imposed frequency is close to a resonance frequency.

2.2 Modes in open geometry (unusual)

We have seen that a closed cavity sustains an infinite of modes. In open

geometry the wave has the ability to radiate towards infinity so that in gen-

eral there is no homogeneous solution of the Helmholtz equation with finite

energy. Nevertheless, for open geometry where the wave can be evanescent

towards infinity, we will see that it is possible to obtain trapped mode. A

Figure 2. Trapped modes in three di⇤erent waveguides with Dirichlet

boundary conditions. (top) bump, (bottom) bends.

3Assuming that the projection of the source term (s|�n) is not zero.
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trapped mode is defined as an homogeneous solution of the wave equation

(↵�+ k2� = 0) with finite energy,

Z
|�|2dx finite.

It is associated with a real resonance frequency k and the set of resonance

frequencies of trapped modes for a given geometry is discrete. Waveguides

are the typical geometries where trapped modes may exist because in such

geometries the wave propagates towards infinity through a finite number of

propagating transverse modes and an infinite number of evanescent waves.

For instance, for waveguides with Dirichlet boundary conditions, there is a

frequency threshold below which the wave is purely evanescent in the leads

towards infinity. Below this threshold, the wave cannot escape from a de-

fect in the waveguide and a trapped mode can be easily found. Figure 2

Figure 3. Trapped modes in bent waveguides with a mixing of Dirichlet

and Neumann boundary conditions in the leads.

shows three examples of trapped mode for waveguides with Dirichlet bound-

ary conditions
4
. Boundary conditions of di⇤erent types can also support

trapped modes. Figure 3 correspond to trapped modes in bent waveguides

with a mixing of Dirichlet and Neumann boundary conditions. The trap-

ping is still rather ”easy” since a waveguide with Neumann BC on one side

4This situation is common in quantum mechanics where these modes are called bound

states.
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and Dirichlet BC on the other side still has a non-zero frequency threshold

where the wave cannot propagate. The case of waveguides with Neumann

boundary conditions (as in acoustics) needs a little more of subtlety. The

plane is always propagating with no cut-on frequencies and the wave is able

to radiate towards infinity even for low frequencies. Nevertheless, as will

be described with more details in the next section, by using symmetry of

the geometry it is possible to recover the same situation as for Dirichlet

waveguides where the antisymmetric part of the wave is evanescent below

a threshold frequency. Examples of trapped modes for symmetric acoustic

waveguides are shown in Figure 4.

Figure 4. Trapped modes for symmetric waveguides with Neumann bound-

ary conditions (acoustic case).

3 Trapped modes for scalar waves

Trapped modes can exist in waveguides, i.e. system confined in at least one

direction, where evanescent waves are able to localize the energy around a

defect. The basic mechanism of trapping is well described by the simple

model of the potential well.

3.1 Trapping mechanism: the potential well

The potential well is illustrated in Figure 5. In this model, the wave is

governed by the Schrodinger equation

�” + (k2 � V (x))� = 0, (7)

where V is the potential (further details on the physical context can be found

for instance in Landau and Lifshitz (1977)). For this model, V is constant

(V = V0) except in a the central region |x| < a where it is zero (see Fig. 5).

The equations inside the well and outside the well are respectively

|x| < a : �” + k2� = 0 (8)
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Figure 5. The potential well.

and

|x| > a : �” + (k2 � V0)� = 0. (9)

Inside the well, for |x| < a, the wave can always propagate, but the propa-

gation of the wave outside the well, for |x| > a, is controlled by the sign of

k2 � V0. If k2 < V0, the wave is evanescent and the it will be seen that a

trapped mode exists.

Trapping case: k2 < V0. In this case, the wave is evanescent outside

the well. A trapped mode is a solution of the homogeneous wave equation

(7) with outgoing radiation condition outside the well. Benefiting from the

symmetry of the problem with respect to x = 0, we are looking for a trapped

mode even in x. Inside the well, |x| < a, the solution is

� = A cos kx (10)

and for |x| > a the outgoing radiation condition selects a solution of the

form

� = Be��|x|. (11)

The continuity of � and �⇤
at x = a yields an implicit equation on k:

k tan ka = �, (12)

where � =
✏
V0 � k2. This implicit equation can solved graphically as shown

in Figure 6. Whatever the value of V0, it is obvious that it posses at least

one solution kR that corresponds to the resonance frequency of a trapped

mode. When V0 goes to zero, it is possible to obtain an approximate explicit

resonance frequency:

k2R � V0 � V 2
0 a

2.

It is typical of a trapped mode with a weak defect: the resonance frequency

is asymptotically close to (and below) the threshold (or the cut-on frequency,
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Figure 6. Resolution of the implicit equation of the trapped mode.

here represented by
✏
V0) where the wave becomes propagative. This kind of

results are also found for trapped in waveguides with small defect (Nazarov,

2011). The shape of the trapped mode calculated for a = 1 and V0 =

2 is shown in Figure 7. The corresponding resonance frequency solution

of the implicit equation (12) is numerically found to be kR = 0.89. The

Figure 7. Shape of the trapped mode for a = 1 and V0 = 2. The resonance

frequency is kR = 0.89.

structure of trapping appears. Inside the well, playing the role of a defect,

the wave is propagating and it cannot radiate towards infinity since the

wave is evanescent outside. Actually, we have the same situation as in a

closed cavity with the evanescent region playing the role of e⇤ective walls.
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Scattering case: k2 > V0. When the frequency is above the threshold

(k2 > V0) the wave is propagating everywhere. The trapping is not possible

and the solution to the wave equation is in the form of a scattering state

(Landau and Lifshitz, 1977). For x < �a

� = ei⇥x +Re�i⇥x, (13)

and for x > a
� = Tei⇥x, (14)

where ⇥ =
✏
k2 � V0. The scattering coe⌅cients can be found (Landau and

Lifshitz, 1977) from the linear system of four equations with four unknowns

obtained by applying the continuity of � and �⇤
at x = ±a with the solution

inside the well (|x| < a) given by

� = A cos kx+B sin kx. (15)

It appears that no trapping is possible in this case because as soon as

Figure 8. Spectrum of the potential well.

the wave is nonzero it has to radiate energy towards infinity. A sketch of

the spectrum along the frequency axis k is shown in Figure 8. Above the

threshold, we have the scattering states for the continuous set of k such

that k >
✏
V0. Below the threshold, no wave can propagate towards infinity

and the trapping is possible for some discrete values of k. These resonance

frequencies are selected by interference e⇤ect in the propagating well with

the e⇤ective wall e⇤ects of the evanescence regions. In this particular model

of the potential well there is at least one trapped mode, but in other sit-

uations with a similar threshold frequency it is possible that no trapping

occurs (Nazarov, 2011).

The simple mechanism of trapping that has been described is the typi-

cal one in other wave system for open geometries in 1D, 2D and 3D. The
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important property is the existence of a frequency gap for which the wave

is evanescent towards infinity. Then, for frequencies inside the gap, the

evanescence environment is able to play the role of an e⇤ective wall for a

defect and we recover the situation of a closed cavity. In the following, we

focus on waveguides in 2D that naturally present cut-on frequencies creating

the frequency gap.

3.2 Dirichlet waveguide

Trapped modes are solutions of the homogeneous wave equation with

outgoing radiation conditions. We have seen that evanescence is the way to

be trapped and the perfect candidates are thus waveguide geometries. We

begin with Dirichlet waveguides where previously discussed frequency gap

appears more simply than for Neumann waveguides. The transverse modes

Figure 9. Dirichlet waveguide of width h.

of the waveguide are necessary to make to appear the evanescent character

of the propagation. They are defined as solution of the wave equation in a

straight waveguide (Figure 9) sought in the separable form:

�(x, y) = ei�xg(y). (16)

Inserting this form into the wave equation gives the ordinary di⇤erential
equation on the function g:

d2g

dy2
+ (k2 � �2

)g = 0. (17)

On the other hand, the Dirichlet boundary conditions on the wall, � = 0

for y = 0 = h, implies that

g(0) = g(h) = 0. (18)

Equations (17) with (18) have an infinite discrete set of solutions

gn(y) =

r
2

h
sin(

n y

h
) (19)
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indexed by the integer n ⇧ 1. The pre-factor

p
2/h is chosen so as to ensure

the orthonormality of the transverse modes

Z h

0
gn(y)gm(y)dy = ⌅nm.

Each transverse mode is associated to an axial wavenumber � indexed by

n ⇧ 1:

�2
n = k2 �

⇣n 
h

⌘2
. (20)

Here comes the propagating or evanescent waves. For a given frequency

k, a transverse mode is either propagating (real �n ) or evanescent (imag-

inary �n) depending on the sign of �2
n. Thus for k > n /h the wave is

propagating and for k < n /h the wave is evanescent. Since n ⇧ 1 there

appears that all the transverse modes are evanescent for k <  /h. The

Figure 10. Spectrum of the Dirichlet waveguide with lead width h.

general solution of the wave equation can be expanded
5
on the infinite set

of transverse modes
6
as

� =

⌅X

0

(cne
i�nx + dne

�i�nx)gn(y), (21)

which means that for k <  /h any wave solution is only composed of evanes-

cent waves. For k >  /h, at least the mode with n = 1 is propagating and

when the frequency increases more and more transverse modes are prop-

agating with the cut-on frequencies at kc,n = n /h. In the presence of a

defect, similarly to the model of the potential well, a sketch of the spec-

trum along the frequency axis k can be given (Figure 10). For a Dirichlet

5The terms e±i�nx correspond respectively to right/left going waves.
6These transverse modes play the role of generalized Fourier series modes and form a

complete basis on 0 ⇥ y ⇥ h (Stakgold, 1998).
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waveguide, with leads towards infinity of width h, the wave cannot prop-

agate in a gap 0 < k <  /h. Thus a the existence of a trapped mode is

possible in this gap, depending of the shape of the defect between the leads.

For a local perturbation of the width of the waveguide corresponding to an

increase of the volume it can be proven that a trapped mode exists and

asymptotic approximations of the resonance frequencies can be obtained

(Nazarov, 2011). Figure 11 displays the pattern of such a trapped mode.

For the case of bent quantum waveguides, there is an important literature

discussing the existence of trapped modes often called bound states in this

quantum mechanics community (Duclos and Exner, 1995).

Figure 11. Trapped mode for a defect in Dirichlet waveguide.

3.3 Neumann waveguide

The question of trapped modes in waveguides with Neumann boundary

conditions is more involved because the plane transverse mode can always

propagate. Indeed, when seeking a separable solution of the form � =

ei�xg(y) in the geometry shown in Figure 12, the ODE for g is the same as

for Dirichlet waveguides,

g” + (k2 � �2
)g = 0, (22)

but the Neumann boundary conditions imply that

g⇤(0) = g⇤(h) = 0. (23)

The transverse modes are thus of the form

gn(y) =

r
2� ⌅0

h
cos(

n y

h
), (24)

where n ⇧ 0 and with the pre-factor permitting the orthonormality

Z h

0
gn(y)gm(y) dy = ⌅nm.

Following the same reasoning as in the previous section, the transverse
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Figure 12. Neumann waveguide of width h.

Figure 13. Structure of the spectrum for a Neumann waveguide with lead

width h.

mode indexed by n is propagating if k > n /h. The novelty here is that

the plane transverse mode (with n = 0) has no cut-on frequency and can

propagate for any frequency. The spectrum is shown in Figure 13.

Thus, the wave can radiate towards infinity whatever the frequency. To

create a gap we need to decouple the plane wave mode from the other ones.

The ”trick” is then to use the symmetry of the geometry in order to get the

decoupling. Indeed, for a waveguide symmetric with respect with the axis

x (Figure 14), the symmetric part (even w.r.t. y) of the solution �s and the

antisymmetric part (odd w.r.t. y) �a of the solution are defined as

�s(x, y) =
1

2
(�(x, y) + �(x,�y)) (25)

and

�a(x, y) =
1

2
(�(x, y)� �(x,�y)) . (26)

These two parts of the wave are decoupled owing to the symmetry of the

Figure 14. A symmetric waveguide.

geometry. Consequently, we have in fact two decoupled problem for wave
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propagation in this case: the symmetric part of the wave associated with the

even transverse modes indexed by even integers (n=0,2,4,...) and the anti-

symmetric part of the wave associated with odd transverse modes indexed

by odd integers (n=1,3,5,...). Since the plane mode with n = 0 belongs to

the first part, the decoupling due to the symmetry allows to recover the same

threshold (cut-on frequency) as for the waveguide with Neumann boundary

conditions. The gap exists for the antisymmetric part of the wave (Figure

15). The existence of trapped modes for Neumann waveguides using this

Figure 15. Spectrum for a symmetric waveguide with lead width h.

symmetry argument is the classical one in the literature (Evans et al., 1994).

In Figure 16 the example of such a trapped mode is shown for the geometry

of an acoustic expansion chamber.

Figure 16. A trapped mode in symmetric Neumann waveguide.

3.4 Approximate mode matching

The determination of trapped modes is di⌅cult and needs usually full

numerical computations, but, for some geometries, it is possible to find sim-

ple approximations. In the case of a rectangular obstacle (Fig 17), mode

matching techniques can be applied and useful simple analytical approxi-

mations can be found. Consider the geometry shown in Figure 17: it is

symmetric with Neumann boundary conditions and as such can accept a

trapped mode solution (remind that it is a solution of the homogeneous

14



Figure 17. Trapped mode for a symmetric rectangular obstacle in a Neu-

mann waveguide.

Helmholtz equation (1) with outgoing radiation condition). The trapped

mode has to be an antisymmetric solution as discussed in the previous sec-

tion, and by symmetry the domain can be reduced to the rectangle drawn

in Figure 17 and reproduced in Figure 18. To apply an approximate mode

matching technique we choose to keep just the plane mode in the central

region of Figure 18 but to take into account the full set of evanescent waves

outside the obstacle. Thus the solution for 0 < x < a is approximated by

�(x, y) = A cos(kx) (27)

and outside the obstacle (x > a) the solution is expanded on the full series

of evanescent modes,

�(x, y) =
X

n⇥0

cne
�Kngn(y), (28)

where Kn =

p
⇤2n � k2, ⇤n = (2n+ 1) /h and gn(y) = 2/

✏
h sin ⇤ny. Note

that, since we are in the frequency gap k <  /h (see previous section),

⇤n > k for all n. The following interface boundary conditions have to be

Figure 18. Partition of the problem.

satisfied at x = a:

�(a+, y) = �(a�, y) for b < y < h/2 (29)
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and

✏x�(a
+, y) = ✏x�(a

�, y) for b < y < h/2, (30)

✏x�(a
+, y) = 0 for 0 < y < b. (31)

Mode matching consists in projecting equations (29–31) on the transverse

modes that have been taken into account in the solution expansion in (27–

28). Projection of the continuity of � on the plane mode,

Z h/2

b
�(a+, y) dy =

Z h/2

b
�(a�, y) dy, (32)

yields a first relation between the unknown coe⌅cients A and cn:

X

n⇥0

cn

Z h/2

b
gn(y) dy = A(h/2� b) cos(ka). (33)

On the other hand projection of equations (30-31) on each of the outside

transverse modes is done through

Z h/2

0
✏x�(a

+, y)gn(y) dy =

Z h/2

b
✏x�(a

+, y)gn(y) dy (34)

=

Z h/2

b
✏x�(a

�, y)gn(y) dy, (35)

and it gives for each n ⇧ 0:

Kncn = Ak sin(ka)

Z h/2

b
gn(y) dy. (36)

Eventually, by eliminating cn between (33) and (36), we obtain

tan(ka) =
h

8
(h� 2b)

1

X

n⇥0

cos(⇤nb)

⇤n

kp
⇤2n � k2

(37)

where k is the unknown. This determines implicitly the resonance frequency.

The k = kR solution is a good approximation when the rectangular obstacle

is long enough because it neglects the higher order modes for x < a.
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3.5 Mathematical proof: variational technique

These notes are not really mathematically oriented and the rigorous

approach to trapped modes can be found in the functional analysis literature

(Duclos and Exner, 1995; A.S. Bonnet-BenDhia and Mahé, 1997; Bonnet-

BenDhia and Mercier, 2007; Nazarov, 2011). Nevertheless we briefly present

here the popular variational technique often used to prove the existence of

trapped mode.

The idea comes from the min-max principle for an hermitian matrix of

finite size (M = M
T
). It states that the eigenvalues ⌥n of M verify

min(⌥n) ⌅
(x|Mx)

(x|x)

�x �= 0. We recognize here the Rayleigh quotient. This latter can be also

defined for the eigenvalue problem corresponding to trapped mode under

the form

Q(�) =

R
|⇣�|2dxR
|�|2dx

.

Here � is a square integrable
7
test function respecting the imposed boundary

conditions (i.e. � must be in the domain of the operator). Then, the

variational min-max principle (Bonnet-BenDhia and Mercier, 2007) states

that if

Q(�0) <
 2

h2

for some test function �0 then there exists a trapped mode with resonance

frequency kR such that

kR ⌅
p
Q(�0).

What is nice here is that it is su⌅cient to cleverly choose a test function

which is not a solution of the wave equation to prove the existence of a

trapped mode. Let us take the simple example of the trapped mode for

the Neumann waveguide with a rectangular obstacle (Figure 19). We can

choose the test function defined by

�0 = sign(y) cos(
 x

2a
)

for |x| < a and

�0 = 0

7In the sense that the function and its gradient are square integrable so that the Rayleigh

quotient is well defined.
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Figure 19. Trapped mode in the Neumann waveguide with rectangular

obstacle.

for |x| > a.
Of course this test function is not a solution of the Helmholtz equation

but it is square integrable (as is its gradient) and it verifies the Neumann

boundary condition at the wall. A simple computation shows that

Q(�0) =

R
|⇣�0|2dxR
|�0|2dx

=
 2

4a2
.

From the variational principle min-max principle, we know that a trapped

mode exists if

Q(�0) =
 2

4a2
⌅  2

h2
. (38)

Hence, from the variational principle and (38), we can conclude that a

Figure 20. Spectrum of the Neumann waveguide with rectangular obstacle.

trapped mode exists if

a > h/2

and that the corresponding resonance frequency will satisfy

kR <
 

2a
.

The corresponding scheme of the spectrum is shown in Figure 20.

By this example, we see how powerful is this variational technique: with

the very simple choice of the test function �0 it has been possible to rigor-

ously prove the existence of the trapped mode and to find an upper bound

for the resonance frequency.
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3.6 Higher frequencies

So far, we have focused on trapped modes at low frequencies. Their exis-

tence can be understood from the existence of a frequency gap 0 < k <  /h
where the waves are evanescent in outgoing leads of the waveguide. For

higher frequencies, trapped modes can also exist but their existence is more

di⌅cult to show. Heuristically, it can be argued there that for higher cut-on

frequencies there exists ”gaps” with a finite number of transverse mode that

can radiate. A trapped mode has to be in ”good interferences” in order to

annihilate the component on this finite number of modes. In such a situa-

tion, McIver et al. (2001) have chosen the term embedded trapped modes to

stress that no symmetry is able to decouple the modes from the continuous

spectrum of scattering states
8
. By taking an obstacle with several parame-

ters they have shown that is possible to construct trapped mode above the

threshold of evanescence given by symmetries of the geometry.

Figure 21 displays the example of a trapped mode with a resonance

frequency above the threshold of evanescence (k >  /h ) for a Dirichlet

waveguide. In this case two propagating transverse modes might radiate

towards infinity.

Figure 21. Trapped mode for a Dirichlet waveguide at higher frequencies.

4 Quasi-trapped modes and edge waves

4.1 Quasi-trapped modes and complex resonance

The trapped modes previously discussed are very particular object that

are perfectly localized in infinite waveguide. But waves can also be localized

8These modes are often called BIC (Bound States in the Continuum) in quantum me-

chanics.
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with a small leakage. This corresponds to quasi-trapped modes (or complex

resonance as we shall see).

Figure 22. Localized wave in a thin slot.

As an example, consider the geometry shown in Figure 22: a semi-infinite

acoustic waveguide (Neumann) with a thin slot at the edge. It can be

thought as a system coupling the closed thin slot with the trivial semi-

infinite waveguide, and, intuitively, it is not surprising that this geometry

can posses solution with the wave strongly localized in the slot when the

frequency is close to the resonance frequency of the closed slot. The solution

plotted in Figure 22 corresponds to such a quasi-trapped wave close to the

⌥/4 resonance (kL �  /2) of the slot. Here, by energy conservation, the

reflected power flux is equal to the incident one (and so the wave is leaking

towards infinity), but the amplitude in the slot is much larger than in the

principal waveguide.

Figure 23. Approximate model for the thin slot quasi-trapping.

To gain further insight, it is useful to look at an approximate solution to

this problem. We are at low frequencies so that we can just take the plane

wave transverse mode in each part of the waveguide (kh2 <  ). For x < 0,

the wave in the slot is given by

p = A cos k(x+ L), (39)

and in the principal waveguide (x > 0):

p = e�ikx
+Reikx. (40)
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The approximate model is summarized in Figure 23. It remains to apply

the matching at the interface x = 0 that consists in the continuity of p and

hp⇤. These yield the two equations:

A cos(kL) = 1 +R (41)

and

�Akh1 sin(kL) = �ikh2(1�R). (42)

Eliminating the coe⌅cient A, we find the reflection coe⌅cient R to be

R =

1 + i
h1

h2
tan(kL)

1� i
h1

h2
tan(kL)

. (43)

This simple result is interesting because it illustrates the behavior of a quasi-

trapped mode. First, note that |R| = 1 for real frequency due to energy

conservation. Next, by inspecting what happens for complex k, from (43),

it appears that R has pole for k solution of

1� i
h1

h2
tan(kL) = 0. (44)

This complex value of k is the complex resonance frequency (Flax et al.,

1981; Aslanyan et al., 2000) corresponding to a quasi-trapped mode. For

very thin slot the asymptotic solution of (44) is given by

kRL �
 

2
� i⇧ (n ) (45)

where ⇧ = h1/h2 ⌃ 1. Hence, we recover the intuitive ⌥/4 resonance

foreseen in Figure 22, but with an imaginary part due to the leakage of the

wave towards infinity.

More generally (independently of the approximate solution presented

above), a complex resonance is associated to a mode with complex resonance

frequency. It is mode since it is a solution of the homogeneous wave equation

with outgoing radiation towards infinity (it can radiate because k has an

imaginary part
9
). Thus a complex resonance frequency is both (Aslanyan

et al., 2000):

• a complex k for which there is a solution to the homogeneous Helmholtz

equation with outgoing radiation condition

9 This imaginary part has to be negative as will be seen in the next section.
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• a complex k that is a pole of the reflection coe⌅cient (or more gener-

ally the scattering matrix)

Both definitions are valid because a pole of the reflection coe⌅cient gives a

solution to the wave equation without incident wave.

In the time domain, the negative imaginary part of the frequency gives

the ringing time of the mode (similar to the radioactive half-life) since with

the chosen convention of time dependence e�i⇧t
the wave decreases as e⇧it

where �i = c Imag(kR). Besides, a complex resonance has a quality factor

measuring (as for the harmonic oscillator) how sharp is the resonance. Fig-

ure 24 displays a quasi trapped mode for a complex resonance with a very

large quality factor. This huge quality factor is due to the weak coupling

between the mode of the rectangular cavity and the lead of the waveguide

where the the wave can leak.

Figure 24. Example of long lived state with quality factor Q � 10
5
.

4.2 Some properties for complex resonance

It is possible to show that the imaginary part of the complex resonance

frequency is positive due to outgoing radiation condition. Let us consider

the geometry depicted in Figure 25. A quasi-trapped mode is solution to

the wave equation

↵p+ k2p = 0, (46)

with Neumann boundary condition on the walls and outgoing radiation

condition on Sout. Multiplying this equation by p and integrating on the
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Figure 25. Cavity coupled to a a waveguide.

volume V gives

Z

Sout
p ✏np�

Z Z

V
|⇣p|2 + k2

Z Z

V
|p|2 = 0. (47)

The outgoing radiation condition is translated
10

into ✏np = ikp on Sout so

that we obtain

ik

Z

Sout
|p|2 �

Z Z

V
|⇣p|2 + k2

Z Z

V
|p|2 = 0. (48)

Taking the imaginary part of this equation yields

ikr

Z

Sout
|p|2 + 2kikr

Z Z

V
|p|2 = 0 (49)

where kr and ki are the real and imaginary part of k. Eventually, it comes

that

ki = �

Z

Sout
|p|2

2

Z Z

V
|p|2

. (50)

Equation (50) demonstrates that the imaginary part of the complex reso-

nance frequency has to be negative. With
11 k = �/c, we conclude that the

10Here, for the sake of simplicity, we assume that only the plane transverse mode has to

be taken into account but the exact outgoing radiation condition using the Dirichlet

to Neumann operator works similarly.
11In this section we are in the dispersionless case where c does not depend on ⇥ so that

k and ⇥ are interchangeable.
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complex resonance frequency can only be located in the lower half plane

Im(�) < 0.

Figure 26. Analytical structure of R in the complex frequency plane.

Besides, by time reversal symmetry (complex conjugation) it appears

that
12

R(�) =
1

R(�)
. (51)

It means that a pole �R of the reflection coe⌅cient (complex resonance

frequency) is associated to a zero of R at �R. Locally, near the complex

resonance frequency, the reflection coe⌅cient can thus be expressed as

R(�) = ei⌅
� � �R

� � �R
. (52)

The phase ⌃ is slowly varying for � in the neighborhood of �R and it is

real for real � because then |R| = 1 by energy conservation. It is termed a

background phase term for it represents the slow variation in the scattering

compared to the rapid variation due the close resonance frequency �R. This

local expression for R is very useful: it encodes very simply the local behav-

ior of the quasi-resonance and it explains the universal 2 shift observed for

the phase of the scattering. Figure 26 summarizes the analytical structure

of the reflection coe⌅cient. Poles (or complex resonance frequency) of R
are in the lower half plane and they are mirrored by zeros in the upper half

plane.
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Figure 27. 2D edge resonance in an acoustic waveguide, obtained by sym-

metry from the trapped mode with a rectangular obstacle.

4.3 Edge waves

A 2D trapped mode in an acoustic waveguide (with Neumann boundary

conditions) is solution of the Helmholtz equation

(✏xx + ✏yy) p+ k2Rp = 0, (53)

with the outgoing boundary condition

p(x, y)⌥ 0 (54)

when x ⌥ 0. By symmetry w.r.t. the vertical axis, the trapped mode

examined in Figure 19 can be converted to a trapped mode in the semi-

infinite waveguide shown in Figure 27. This solution is essentially 2D, but

what does it imply in 3D?

We consider the extension of the previous geometry to 3D as displayed

in Figure 28. An edge wave for the 3D geometry is sought as a solution of

the 3D Helmholtz equation

(✏xx + ✏yy + ✏zz) p+ k2p = 0 (55)

with Neumann boundary conditions at the walls and the outgoing radiation

�(x, y, z)⌥ 0 (56)

when x⌥ 0. The edge wave propagating along the z axis is written as

p(x, y, z) = ei⇥z�(x, y). (57)

12This property is also valid for the scattering matrix (Flax et al., 1981; Aslanyan et al.,

2000).

25



Figure 28. From 2D to 3D.

Inserting Equation (57) into the 3D Helmholtz equation yields the equation

for �:
(✏xx + ✏yy)�+ (k2 � ⇥2

) � = 0, (58)

with Neumann boundary condition and the condition that �(x, y)⌥ 0 when

x ⌥ 0. The equations and the boundary conditions for � of the 3D edge

wave are exactly the same as those of the 2D trapped mode. It means that

� is a 2D trapped mode and by comparing Equations (53) and (58):

k2 � ⇥2
= k2R. (59)

This gives immediately the dispersion relation of the 3D edge wave

�2

c2
= ⇥2

+ k2R. (60)

Hence a 2D trapped mode can be converted into a 3D edge wave and the 2D

resonance frequency becomes the cut-on frequency in 3D. The corresponding

dispersion relation is plotted in Figure 29.

A 2D quasi trapped mode can also be extended to 3D. It is then converted

into a 3D leaky edge mode. It is damped (leaky) as it propagates along the

z axis since the wave is not perfectly localized at the edge and it radiates

continuously some energy. Mathematically, the leakage Im(⇥) > 0 comes

from the di⇤erentiation of the dispersion relation,

Im(kR)Re(kR) + Im(⇥)Re(⇥) = 0,

that implies

Im(kR) < 0 Im(⇥) > 0.
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Figure 29. Dispersion relation of the 3D edge wave.

4.4 The simplest edge

Let us examine the simplest case of edge: the semi-infinite strip with a

cut at x = 0 (Figure 30). Is a trapping of the scalar acoustic wave possible

near the edge with a simple boundary condition?

For Dirichlet boundary conditions at the edge x = 0,

�(0, y) = 0

automatically results in

�(x, y) =
X

n

cn(e
iknx � e�iknx)gn(y).

For Neumann boundary conditions, ✏x�(0, y) = 0 imposes

�(x, y) =
X

n

cn(e
iknx + e�iknx)gn(y).

We conclude that neither Dirichlet nor Neumann boundary conditions at

the edge is able to support an acoustic solution with outgoing boundary

conditions towards x⌥⌦. A richer boundary condition is needed to trap

the wave. For scalar waves, impedance at the edge can sustain trapping

(but they add a parameter in the problem). In the next section, we will see

that elastic waves (vectorial waves) have the ability to trap the wave near

the simplest edge with a traction free surface.
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Figure 30. The simplest edge: the semi-infinite strip.

5 Edge resonance in elastic waveguides

5.1 Elastic waveguides

The considered geometry is depicted in Figure 31. The equations of

linear elastodynamics for isotropic solid are

�⌦�2w = ⇣.↵, (61)

where ⌦ is the mass density, w = (ux, uy, uz)
T

is the elastic displacement

and ↵ is the stress tensor. Owing to the elastic Lamé parameters ⌥ and µ,
the Hooke law links the strain tensor to the stress tensor through

↵ = ⌥ divw Id + µ(⇣w +⇣wT
). (62)

Equation (61) can be be rewritten in term of displacement only:

�⌦�2w = (⌥+ 2µ)⇣(⇣.w)� µ⇣�⇣ �w. (63)

Figure 31. Elastic waveguide.

In free space plane wave solutions can be sought in the form

w = w0 eikx, (64)
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that makes to appear two di⇤erent polarizations. The longitudinal wave is

such that

k �w0 = 0 (65)

with a dispersion relation given by

k2 =
�2

c2L
(66)

with c2L ⇤ (⌥+ 2µ)/⌦. The transversal waves are such that

k.w0 = 0 (67)

with the dispersion relation

k2 =
�2

c2T
(68)

with c2T = µ/⌦. In contrast with acoustic waves (scalar waves), the elas-

tic waves can be called vectorial waves since they have di⇤erent kinds of

polarizations.

In waveguides (Figure 31), the transverse modes are of the form

w = w0(y) e
ikx, (69)

with k = q ex and ✏z = 0. Because of the di⇤erent kinds of polarizations,

two families of transverse modes exist:

• SH transverse modes (anti-plane strain). Their non zero components

are uz and (↵xz , ↵yz). It corresponds to a scalar wave equivalent to

acoustic problem with uz replacing the pressure and with Neumann

boundary conditions at the free stress interface.

• Lamb modes (plane strain). Their non-zero components are (ux , uy)

and (↵xx , ↵xy , ↵yy , ↵zz). It corresponds to a vectorial wave

that is composed of one longitudinal polarization and one transversal

polarization.

Having discussed the acoustic case in the previous sections, we now focus

on Lamb modes that are vectorial waves. To find the transverse modes it is

convenient to write the displacement with two potentials

w = ⇣�+⇣� ⇥ ez, (70)

and each of the potentials � and � obeys a scalar wave equation

(�+ k2l )� = 0 (71)
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and

(�+ k2t )� = 0. (72)

The complexity comes from the stress free boundary conditions ↵.n = 0

with n = ±ey at y = ±h. They are

↵xy = (⌥+ 2µ)�yy + ⌥�xx � 2µ�xy = 0 at y = ±h

and

↵yy = µ(�yy � �xx + 2�xy) = 0 at y = ±h.

For transverse modes, the x-dependancies are of the form f(x, y) = F (y)eiqx.
By using � and � that verify (71) and (72) and the boundary conditions,

some algebra show that the global dispersion relation can be factorized in

two simpler dispersion relations:

tanh�h

tanh⇥h
=

4q2�⇥

(q2 + �2)2
for symmetric modes (73)

tanh�h

tanh⇥h
=

(q2 + �2
)
2

4q2�⇥
for antisymmetric modes (74)

with � = (q2 � k2t )
1/2

and ⇥ = (q2 � k2l )
1/2

. Symmetric modes have an

axial displacement ux even w.r.t. y whilst antisymmetric modes have ux

odd w.r.t. y.
Each of the dispersion relation 73 and 74 can be written as D(⇥,K) = 0

where ⇥ = kth is the dimensionless frequency and K = qh is the dimension-

less wavenumber. An example of the behavior of the dispersion behavior

of Lamb modes is shown in Figures 32 and 33 for an elastic material with

Poisson ratio � = 0.3 (cL/cT � 1.87). At low frequencies, only modes S0

and A0 are propagating; the slope of the curve for S0 gives the wave speed

of longitudinal vibrations in thin plate under the plane stress approxima-

tion whilst the parabolic behavior of mode A0 corresponds to the Kirchho⇤
equation for thin plate with flexural vibrations. For a given frequency ⇥,
there is a finite number of propagating modes and an infinity of evanescent

modes (with an non-zero imaginary part of the wavenumber, not shown in

the Figures). Note the atypical behavior near the cut-on frequency of modes

S1 and S2 in Figure 32: this pair of modes becomes propagating at points

C1 and C2 with a non-zero wavenumber K. Moreover, the mode S2 has a

negative phase velocity (K < 0) on a narrow band of frequencies.

5.2 Multimodal method in elastic waveguides

It has been remarked that the structure of the Lamb mode spectra is

much more complicated than the one of transverse acoustic modes presented
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Figure 32. Dispersion diagram of the symmetric Lamb modes.

earlier. In this section, we examine a formalism (Pagneux and Maurel, 2002,

2004, 2006) that facilitates the use of these modes; it make to appear a

structure where the projection on the transverse Lamb modes is done using

a bi-orthogonality relation.

Elasticity equation can be re-written as

✏x

✓
X
Y

◆
=

✓
0 F
G 0

◆✓
X
Y

◆
, (75)

where vectors X and Y are

X =

✓
ux

↵xy

◆
and Y =

✓
�↵xx
uy

◆
,

and where F and G are the matrices of di⇤erential operators

F =

 
�f1
⌥

�f1✏y
f1✏y �⌦�2 � f2✏y2

!
, and G =

0

@
⌦�2 ✏y

�✏y
1

µ

1

A , (76)

with f1 = ⌥/(⌥+2µ) and f2 = 4µ(⌥+µ)/(⌥+2µ). The boundary conditions

at the stress surfaces, ↵.n = 0 (i.e. ↵xy = ↵yy = 0 at y = ±h), can be
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Figure 33. Dispersion diagram of the antisymmetric Lamb modes.

expressed directly on components X and Y for ↵xy is the second component

of X and ↵yy : Y ⌥ ↵yy(Y) = f1↵xx + f2✏yuy.

The equation to find the transverse Lamb modes takes the explicit form

(the x dependance eiqx implies that ✏x becomes iq) of an eigenvalue problem

iq

✓
X
Y

◆
=

✓
0 F
G 0

◆✓
X
Y

◆
, (77)

and the boundary conditions (i.e. ↵xy = ↵yy = 0 at y = ±h) does not

involve the eigenvalue q. Lamb modes are thus eigenvectors of this eigen-

problem with eigenvalues q. There is an infinity of modes: right-going

transverse modes have eigenvalues qn and eigenvectors [Xn,Yn]
T
and left-

going transverse modes have eigenvalues �qn and eigenvectors [�Xn,Yn]
T
.

Assuming the completeness of Lamb modes, any solution can be expanded

as
✓
X
Y

◆
=

X

n⇥0

a+n

✓
Xn

Yn

◆
+

X

n⇥0

a�n

✓
�Xn

Yn

◆
. (78)

The terms of the series can be rearranged to give

X =

X

n⇥0

anXn (79)
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and

Y =

X

n⇥0

bnYn (80)

with

an = a+n � a�n

and

bn = a+n + a�n .

Note that the sum are restricted to positive index numbers.

The operators F and G have a very nice property:

(FỸ|Y) = (Ỹ|FY) + [↵yyũy � ↵̃yyuy]
h
�h

(GX̃|X) = (X̃|GX) + [ux↵̃xy � ũx↵xy]h�h.
(81)

Hence, F and G are symmetric with the inner product defined by
13

✓✓
u1

v1

◆
|
✓
u2

v2

◆◆
=

Z h

�h
(u1u2 + v1v2)dy

for the elastic waves with stress free boundary conditions at y = ±h since

↵xy(±h) = 0 and ↵yy(±h) = 0, see (81). It is then easy to show that

(k2m � k2n)(Xm|Yn) = 0 for two Lamb modes with indices m and n. The

chosen formalism and the properties of F and G allow to directly prove the

bi-orthogonality condition:

(Xn|Ym) = Jn⌅mn. (82)

Eventually, the projections on the Lamb modes are made easy: from the

equations (79) and (80), the components an and bn are given by

(Yn|X) = Jnan

and

(Xn|Y) = Jnbn.

5.3 2D edge resonance

Let us consider a very simple configuration: a 2D semi infinite elastic

waveguide of width h embedded in vacuum. The edge is at x = 0 and the

guide is in the (x > 0,�h < y < h) region (geometry of Figure 34). If the

13This inner product is not a scalar product because the vectors X and Y are complex.
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wave is excited at x = 0 by a source imposing X(x = 0, y) or Y(x = 0, y),
the solution has only right-going wave and can be expressed as

8
>><

>>:

X =

X

n⇥0

�ne
iqnxXn(y),

Y =

X

n⇥0

�ne
iqnxYn(y),

(83)

because a�n = 0. The coe⌅cients �n are uniquely determined by the bi-

orthogonality relation (82)

(X(x = 0, y)|Yn) = Jn�n or (Y(x = 0, y)|Xn) = Jn�n.

That means that, for this problem posed with an initial condition on X
or Y (a mixed condition since it is concerned with one component of dis-

placement and one component of the stress tensor), we have the uniqueness

of the solution: the solution is zero for X(x = 0, y) = 0 or Y(x = 0, y) = 0.

What happens now if the the constraint ↵.n is imposed as a source at x =

0? It gives the values of ↵xx and ↵xy which corresponds to one component

of X and one component of Y. Thus, to impose the constraint ↵.n at

x = 0 is a mixed condition in the XY formalism, and the bi-orthogonality

relation does not allow the projection of the solution on the Lamb modes:

it seems that uniqueness is not ensured. Said di⇤erently, if ↵xx = 0 and

↵xy = 0 are imposed at x = 0, it is possible to have a non-zero solution

with outgoing radiation condition in the very simple problem of the semi-

infinite elastic waveguide. This solution corresponds to a localized mode of

vibration, trapped on the free edge at x = 0.

Figure 34. Reflection of the S0 Lamb mode by a free edge.

The linear elastic equation can be written in a dimensionless from by

normalizing all the lengths by the semi-width h and the stress by the Lamé

coe⌅cient µ:

✏x

✓
X
Y

◆
=

✓
0 F
G 0

◆✓
X
Y

◆
, (84)
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with

F =
1
⇤

✓
�1 �(⇤ � 2)✏y

(⇤ � 2)✏y �⇤⇥2 � 4(⇤ � 1)✏y2

◆
(85)

and

G =

✓
⇥2 ✏y
�✏y 1

◆
, (86)

with ⇤ = (⌥ + 2µ)/µ = c2L/c
2
T . The boundary conditions ↵.n = 0 at the

traction free surfaces are

⇢
↵xy = 0

↵yy = 1/⇤((⇤ � 2)↵xx + 4(⇤ � 1)✏yuy) = 0
at y = ±1, (87)

on the horizontal faces and

⇢
↵xy = 0

↵xx = 0
at x = 0. (88)

Since ⇤ = 2(1��)/(1�2�) (0 < � < 1/2 is the Poisson ratio) and ⇥ = kTh,
when made dimensionless, the problem of vibrations of the semi-infinite

elastic waveguide depends only on two parameters: the frequency ⇥ and the

Poisson ratio �.
In the following we will consider only symmetric waves (with Lamb

modes Sn) for frequency below the cut-on frequency of the mode S1 (see

points C1 and C2 in Figure 32): only the mode S0 is propagating. To

study the edge resonance it is convenient to pose the problem as a reflection

problem. The situation is described in Figure 34 with a left-going S0 inci-

dent wave and a reflected right-going field composed of the propagating S0

(with reflection coe⌅cient R) and the remaining evanescent Lamb modes

(S1, S2, S3, ...). The solution can be written as
14

✓
X
Y

◆
= e�ik0x

✓
X0

�Y0

◆
+Reik0x

✓
X0

Y0

◆
+

+⌅X

n=1

ane
iknx

✓
Xn

Yn

◆
. (89)

For real frequency ⇥, the conservation of energy imposes that |R| = 1.

Several authors have studied that reflection coe⌅cient (Shaw, 1956; Torvik,

1967; Auld and Tsao, 1977; M. Koshiba et al., 1983; Gregory and Gladwell,

1983; Le Clezio et al., 2003) and they all showed the same behavior of R
as a function of the real frequency. Figure 35 displays this behavior for a

14In contrast to the previous section, the convention here is X�
0 = X+

0 and Y�
0 = �Y+

0

in order to have a reflection coe�cient R tending to 1 at low frequencies.
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Figure 35. Phase of the reflection coe⌅cient R as a function of frequency

for � = 0.3.

Poisson ratio � = 0.3: the phase of R has a rapid variation of the phase

near a particular frequency. This is the typical behavior of a quasi-trapped

mode, i.e. a complex resonance frequency that has a finite quality factor in

the harmonic regime (⇥ real). By using the variational tools of functional

analysis, Roitberg et al. (1998) have proved that a trapped mode exists for

this free edge. The works in Zernov et al. (2006) and Pagneux (2006) have

shown that, in fact, there is one complex resonance frequency ⇥R for each

value of the Poisson ratio �.
The complex resonance frequency ⇥R is written as

⇥R(�) = ⇥⇤
R(�) + i⇥”R(�)

which corresponds to a quality factor Q = ⇥⇤
R/(2|⇥”R|). As seen in section

4, a complex resonance frequency is associated to a quasi-trapping with-

out incident mode and it is also a pole of the reflection coe⌅cient R with

Im(⇥) < 0. The edge resonance frequency ⇥R(�) corresponds to a pole of

R(⇥, �).
Figures 36 and 37 show the behavior of ⇥R as a function of the Poisson

ratio. The real part is monotone and it corresponds to the value of the

frequency of quasi-resonance in the harmonic regime (cf. Figure 36). A
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very accurate empirical expression (Pagneux, 2006) for this real part is

Re(⇥R) = 0.652�2 + 0.898� + 1.9866

whose error is less than 10
�3

.

The imaginary part of the complex resonance frequency has a more com-

plicated behavior: Figure 28, which shows �⇥”R on a logarithmic scale,

demonstrates that there are two values of the Poisson ratio where the quasi-

trapped mode becomes a perfectly trapped mode with a real resonance fre-

quency. The perfect resonance at � = 0 is due to a particular symmetry of

the elasticity equation discovered by Roitberg et al. (1998). They showed

that, for � = 0 (i.e. ⌥ = 0), the elastic field can be decomposed into two

parts that are decoupled:

✓
ux

uy

◆
=

 
1
2h

R h
�h uxdy
0

!
+

 
ux � 1

2h

R h
�h uxdy

uy

!
. (90)

The first part contains the propagating S0 mode and the second part all

the remaining evanescent waves. This subtle decoupling is similar to the

simpler one that was presented for trapped modes in Neumann waveguides

in section 3, and it allows the trapped mode at the real ⇥R that does

not radiate through the propagating S0 Lamb mode. The other perfect

resonance at � = 0.2248 can be explained by the uncoupled reflection of the

Lamé mode (Pagneux, 2006). Note the low values of Im(⇥R) that imply

that the edge resonance has a large quality factor.

5.4 Edge resonance for cylinders

The edge resonance exists also for semi-infinite cylinders with traction

free boundary conditions (Gregory and Gladwell, 1989; Holst and Vassiliev,

2000; Pagneux, 2012). The problem under study corresponds to the semi-

infinite circular rod geometry with the vertical edge at z = 0 and the hori-

zontal surfaces at r = a, where (r, ⌃, z) are the cylindrical coordinates. The

domain of the solid rod is defined by r < a and z > 0.

We consider elastic waves that are axially symmetric with displacement

components in the radial and axial directions (Zemanek, 1972; Gra⇤, 1991):
w = (ur(r, z), 0, uz(r, z))T . By taking into account these symmetries and

by making dimensionless the equations (renormalizing all the lengths by a
and the stress tensor by µ), the equations become

�⇥2ur = ✏r↵rr + ✏z↵rz +
↵rr � ↵⌅⌅

r
,

�⇥2uz = ✏r↵rz + ✏z↵zz +
↵rz
r

,
(91)
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Figure 36. Real part of the complex resonance frequency.

Figure 37. Imaginary part of the complex resonance frequency.
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↵rr = 2✏rur + (⇤ � 2)(
1

r
✏r(rur) + ✏zuz),

↵⌅⌅ = 2
ur

r
+ (⇤ � 2)(

1

r
✏r(rur) + ✏zuz),

↵zz = 2✏zuz + (⇤ � 2)(
1

r
✏r(rur) + ✏zuz),

↵rz = ✏zur + ✏ruz,

(92)

with the frequency ⇥ = �a/cT . It is similar to the one defined in 2D with

the 2D semi-height h replaced by the radius a.
The stress free boundary conditions at the horizontal surface (r = 1)

and at the free edge (z = 0) are

↵rr = ↵rz = 0 at r = 1,
↵zz = ↵rz = 0 at z = 0.

(93)

Note that, as in 2D, there are only two parameters: the frequency ⇥ and

the Poisson ratio �.
In this axisymmetric geometry the Lamb modes are replaced by the

Pochhammer modes (Gra⇤, 1991) whose dispersion relation is

(�k2 + b2)2J0(d)J1(b) + 4bdk2J0(b)J1(d)� 2d⇥2J1(d)J1(b) = 0

with b =

✏
⇥2 � k2 and d =

p
⇥2/⇤ � k2. We will consider frequency ⇥

such that only the first mode, n = 0, is a propagating mode and it will be

called the L0 mode. All the other modes, Ln with n ⇧ 1, are evanescent

with Im(kn) > 0.

As in 2D, there is one complex resonance frequency ⇥R for each value

of the Poisson ratio �. The real value of ⇥R is displayed in Figure 36. The

quasi-linear behavior as a function of � is very well approximated (Pagneux,

2012) by the empirical formula

Re(⇥R) = 1.9624� + 2.3573,

accurate up to 0.3%. Figure 37 shows the behavior of the imaginary part of

⇥R. Once again, as in 2D, there are two values of the Poisson ratio where

the trapping is perfect with a zero imaginary part of ⇥R and no radiation

from the edge. The first value (� = 0) was discovered by Holst and Vassiliev

(2000) by the use of a symmetry similar the one of equation (90) and the

second value (� = 0.1267) was found in Pagneux (2012) and it is linked to

the Lamé mode. The shape of the localized vibration is shown if FIgure 38.

5.5 Edge resonance in 3D plate

The study of the 2D elastic edge resonance has been extended to 3D

in Zernov and Kaplunov (2008). These authors have shown that along the

39



−1

0

1

2

3

4

5

6

−1
−0.5
0

0.5
1

−1

−0.5

0

0.5

1

Figure 38. Shape of the localized vibration at edge resonance for � = 0.3.

stress free straight edge there are two edge waves: the first one has no cut-

on frequency and is similar to a generalized Rayleigh wave, the second one

is the 3D counterpart of the 2D edge resonance we have considered before

with ⇥R playing the role of the cut-on frequency.

Another 3D plate configuration is the one depicted in Figure 39. In this

case, it can be shown (Pagneux and Clorennec, 2012) that there exists also

a edge resonance for axisymmetric vibration around the hole.

Figure 39. Hole in a 3D plate.
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5.6 Concluding remarks

In these notes, we looked at the perfectly localized trapped modes and

the ubiquitous slightly radiating quasi-trapped modes. In practice, the dif-

ference between these two families of modes is not so clear since, in an ex-

periment, the inevitable attenuation prevents an infinite quality factor (i.e.

a perfect resonance). It remains that the study of trapped modes provides

clues to e⌅cient resonance mechanisms. The specific ability of trapping for

elastic waves near surface with traction-free boundary condition has also

been discussed. The well known Rayleigh surface wave already testifies to

this ability. Few examples in elastic waveguides have been examined in this

chapter and the conclusion might be that we have to mind the edge e⇤ects
in elastodynamics.
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